CONFIDENTIAL 4541/2 Chemistry Paper 2 August 2019

SIJIL PENDIDIKAN MAKTAB RENDAH SAINS MARA 2019

CHEMISTRY

Paper 2

MARKING SCHEME

FOR EXAMINER'S USE ONLY

ATTENTION

This marking scheme is Confidential and copyright of MARA. It is exclusively for examiner's use only. No information in this marking scheme is allowed to be made known to anyone. This marking scheme is not permitted to be copied in any written or printed form

The marking scheme consists of 18 printed pages

1

CHEMISTRY 4541/2 Paper 2

Section A

	No.		Mark Scheme	Sub Mark	Total Mark		
1	(a)	(i)	[Able to state particle in carbon dioxide correctly]				
			Answer: Molecule	1	1		
			Answer: Liquid	1	1		
		(iii)	[Able to draw the arrangement of liquid correctly]				
			Sample answer				
				1	1		
	(b)	(i)	[Able to name the process occur correctly]				
			Answer: Diffusion	1	1		
		(ii)	[Able to state the factor and explain how the factor affect the rate]				
			Sample answer				
			P1. TemperatureP2. When the temperature is higher the kinetic energy of particles higher// move faster from higher concentration region to lower concentration	1			
			region	1	2		
	(c)	(i)	[Able to state the position of W and Z correctly]				
			Answer				
			1 18				
				1			
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			
			3 4 5 6 7 8 9 10 11 12 P				
				1	2		
				1	2		
	(ii) [Able to state the element correctly]						
			Answer: P	1	1		
			TOTAL		9		

	No.		Mark Scheme	Sub Mark	Total Mark
2	(a)		[Able to state the homologous series correctly] Answer: Alkene	1	1
	(b)	(i)	[Able to state the name of the reaction correctly] Answer: Hydrogenation/ addition of hydrogen	1	1
		(ii)	[Able to write a chemical reaction for the reaction correctly] Answer : $C_3H_6 + H_2 \longrightarrow C_3H_8$	1	1
	(c)	(i)	[Able to state the condition of the reaction correctly] Sample answer Temperature : 300°C// Pressure: 60atm// Catalyst: Phosphoric acid	1	1
		(ii)	[Able to draw the structural formula for propanol correctly]Sample answer H	1	1
	(d)	(i)	[Able to state the chemical formula for the compound formed correctly] Answer: C ₂ H ₅ COOC ₃ H ₇	1	1
		(ii)	[Able to state the physical properties of ester correctly]Sample answerSweet smell // less dense than water // insoluble in water	1	1
	(e)		 [Able to state the substance which is better fuel correctly] Answer: P1. Butane [Able to explain the reason correctly] Sample answer P2. Because the percentage of carbon by mass in butane is lower // The fuel value of butane is higher OR % of C by mass in butane = 48/58 x 100 = 82.76% % of C by mass in kerosene = 144/170x100 = 84.71% 	1	2
			TOTAL		9

	No.		Mark Scheme	Sub Mark	Total Mark
3	(a)	(i)	[Able to state the name of the gas] Answer: Carbon dioxide	1	1
		(ii)	[Able to explain the differences in both observations] Answer:		
			 P1. Acid <u>ionise</u> in <u>water</u> to produce hydrogen ion P2. Hydrogen ion react with carbonate ion // P3. Absence of water, acid remain as molecule. 	1 1 1	3
		(iii)	[Able to write ionic equation occurs]		
			Answer: $2H^+ + CO_3^{2-} \rightarrow CO_2 + H_2O//$ $2H^+ + CaCO_3 \rightarrow Ca^{2+} + CO_2 + H_2O$		
			Correct formula of reactant and product Balance the equation	1 1	2
	(b)	(i)	[Able to state the type of acid correctly]	1	
			Answer: Weak acid	1	1
		(ii)	[Able to calculate the concentration of ethanoic acid correctly]		
			Sample answer		
			P1. Average volume of NaOH = $23.40+23.60+23.50$		
			$= 23.50 \text{ cm}^3$	1	
			P2. No of mole NaOH = $0.10 \times 23.50 / 1000 = 0.00235$ mol	1	
			P3. From equation 1 mol NaOH reacts with 1 mol CH ₃ COOH // :. 0.00235 mol NaOH reacts with 0.00235 mol CH ₃ COOH	1	
			P4. Concentration CH ₃ COOH = $0.00235 \times 1000 / 25$ = $0.094 \text{ mol} / \text{dm}^3$	1	Max
			OR		3
			P2. $\frac{MaVa}{MbVb} = \frac{1}{1}$		
			P3. Ma = 1 x $\frac{0.10 (23.50)}{25.00}$		
			P4. 0.094 mol /dm ³		
			(ecf P2 and P3 only)		
			TOTAL	1	.0

N	0.	Mark Scheme	Sub Mark	Total Mark
4 (a)	(i)	[Able to state the meaning correctly]		
		Sample answer		
		A chemical formula that shows the simplest whole number ratio of atom		
		of each element in a compound	1	1
	(ii)	[Able to determine the molecular formula correctly]		
		Answer		
		[2(12) + 4(1) + 16] n = 88		
		44n = 88 $n = 2$	1	
			1	2
(b)		molecular formula= C4H8O2[Able to state the empirical formula correctly]	1	2
			1	1
(c)	(i)	Answer: C ₁₀ H ₁₂ NO [Able to state two information correctly]		
		Answer:		
		2 mol of sodium azide / NaN ₃ produced 2 mol sodium / Na		
		and 3 mol Nitrogen / N2	1	1
	(ii)	[Able to calculate the volume of gas correctly]		
		Answer :		
		P1. No of mole $NaN_3 = 19.5/65 = 0.30$ mol	1	
		P2. 0.3 mol of sodium azide react with 0.45 mol nitrogen	1	
		P3. Volume $N_2 = 0.45 \times 24$	1	
		$= 10.8 \text{ dm}^3 // 10800 \text{ cm}^3$	1	3
(d)		[Able to draw the compound correctly]		
(4)		Sample answer		
		$\left[\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$		
		Correct nucleus and number of shells Correct number of electrons and charge	1	-
			1	2
		TOTAL		.0

	No.		Mark Scheme		Total Mark
5	(a)	(i)	[Able to state the cathodes correctly]		
			Answer: Q and R	1	1
		 (ii) [Able to state the formula of ions correctly] Answer: Pb²⁺, I⁻ (iii) [Able to state the observation correctly] 			1
				1	1
				1	1
			Answer: Purple gas is released	1	1
		(iv)	[Able to write the ionic equation correctly]	1	1
			Answer: $Pb^{2+} + 2e \longrightarrow Pb$	1	1
	(b)	(i)	[Able to state product at Y]	1	1
			Answer: Chlorine // Cl ₂	1	1
		(ii)	[Able to write chemical equation]	1	1
			Answer: $Cl_2 + H_2O \longrightarrow HCl + HOCl$	1	1
		(iii)	[Able to explain the change of concentration of electrolyte in Cell Y and the reason correctly]		
			Answer:		
			P1. Decreases.	1	
			P2. H^+ ion discharged at cathode and Cl^- ion discharged at anode.	1	
			P3. The concentration of H ⁺ ion and Cl ⁻ ion in the electrolyte decreases // The number of H+ ion and chloride ion <u>per unit</u> volume decreases.	1	3
	(c)		[Able to justify the uses of batteries to sustain a green environment correctly]		
			Sample answer		
			P1. No	1	
			P2. Improper disposal will release poisonous / toxic gas	1	
			OR		
			P1. Yes	1	
			P2. These batteries can be reused / recycle // proper disposal	1	2
			TOTAL	1	.1

	No.	Mark Scheme		Total Mark
6	(a)	[Able to state the meaning of heat of precipitation correctly] Sample answer:		
		Heat change when 1 mol of precipitate is formed from its ion in the solution//		
		Heat <u>released</u> when 1 mol of silver chloride formed from silver ion and chloride ion in the solution//		
		Heat <u>absorb</u> when 1 mol of magnesium carbonate formed from magnesium ion and carbonate ion in the solution	1	1
	(b)	[Able to state one observation]		
		Answer: White precipitate r: container feel warm/ cold	1	1
	(c)	[Able to write ionic equation correctly]		
		Sample answer: $Ag^+ + Cl^- \longrightarrow AgCl//$ $Mg^{2+} + CO_3^{2-} \longrightarrow MgCO_3$	1	1
	(d)	[Able to compare and explain the difference in temperature change of the experiment correctly]		
		Sample answer		
		P1. Temperature change in set I is increase and in set II is decrease	1	
		P2. Set I is exothermic reaction set II is endothermic reaction // Set 1 release heat set II absorb heat	1	2
	(e)	[Able to calculate the heat of precipitation for Set II correctly] Sample answer		
		P1. $Q = mc\theta = (20 + 20) \times 4.2 \times 3 = 504J$	1	
		P2. no of mol = $0.5 \ge 20/1000 = 0.01$ mol	1	
		 P3. Precipitation of 0.01mol of MgCO₃ absorbs 504J // :. Precipitation of 1 mol absorbs 504/0.01 = 50400J 	1	
		P4. $\Delta H = +\frac{504}{0.01} = +50400 \text{ J / mol} // \Delta H = +50.4 \text{ kJ / mol}$	1	max3

No.	Mark Scheme		Total Mark
(f)	[Able to draw the energy level diagram for Set II correctly]		
	Sample answer		
	Energy		
	MgCO ₃		
	$\Delta H = +50.4 \text{ kJ mol}^{-1}$		
	$Mg^{2+} + CO_3^{2-}$		
	P1. Energy level of reactants and products, axis with label energy	1	
	P2. Chemical / ionic equation and ΔH	1	2
(g)	[Able to write what should be done to reduce heat loss to the surrounding correctly]		
	Sample answer		
	Cover the polystyrene cup with lid // pour the solution quickly // double the polystyrene cup // wrap the polystyrene cup with cloth	1	1
	TOTAL		11

	,	

Section B:

	No.		Mark Scheme	Sub Mark	Total Mark
Q7	(8	ı)	[Able to determine the molecular and empirical formula for the compound] [Able to state the information from the molecular formula]		
			P1. Molecular formula: $C_4H_6O_6$	1	
			P2. Empirical formula: $C_2H_3O_3$	1	
			P3. The compound consists of carbon, hydrogen and oxygen	1	
			P4. There are 4 carbon atoms, 6 hydrogen atoms and 6 oxygen atoms in the molecule// There are 4 mol carbon, 6 mol hydrogen and 6 mol oxygen.	1	4
			(Remark: P3 can be obtain from P4)		
	(b)	(i)	[Able to write chemical equation for the reaction]		
			$4\mathrm{Fe} + 3\mathrm{O}_2 \rightarrow 2\mathrm{Fe}_2\mathrm{O}_3$		
			P1. Correct formulae of reactants and product	1	
			P2. Balanced equation	1	2
			[Able to calculate the volume of O_2]		
		(ii)	P1. Mass of iron = 2.0 g	1	
			P2. Number of mole of Fe = $\frac{2}{56}$ = 0.0357 mol	1	
			P3. 4 mol of Fe react with 3 mol of $O_2 //$		
			0.0357 mol of Fe react with $\frac{3}{4} \ge 0.0357$		
			4 = 0.268 mol of O ₂	1	
			P4. Volume of $O_2 = 0.268 \times 24$		
			$= 0.643 \text{ dm}^3 // 643 \text{ cm}^3$	1	4

No.			Mark Scheme	Sub Mark	Total Mark
(c)					
		Oxide of P	P1. React with nitric acid to form salt and water// reaction occur	1	
		Oxide of 1	P2. Shows basic properties	1	
		Orrido of O	P3. React with sodium hydroxide solution to form salt and water// reaction occur	1	
		Oxide of Q	P4. Shows acidic properties	1	
		Oxide of R	P5. React with both nitric acid and sodium hydroxide solution to form salt and water// reaction occur	1	
			P6. Shows amphoteric properties	1	6
	(ii)		he name of metal P, Q and R] netal P, Q and R in an increasing order of		
		P1. P: sodium / ma	gnesium	1	
		P2. Q: silicon / sul	phur	1	
		P3. R: Aluminium		1	
		[r: formula]			
		P4. P R Q			
		Increasing order	r	1	4
]	FOTAL	20

	No.			Mark Scheme		Sub Mark	Total Mark
Q8	8 (a) [Able to state type of cell and compare contrast between cell P and Q] 9 P1. Cell P: Chemical cell/ voltaic cell Cell Q: Electrolytic cell						
			Characteristic	Cell P	Cell Q		
			P2. Energy change	Chemical energy to electrical energy	Electrical energy to chemical energy	1	
			P3. Positive terminal of the cell	Silver	Silver	1	
			Half equation at anode	P4. $Zn \rightarrow Zn^{2+} + 2e$	P5. Ag \rightarrow Ag ⁺ + e	1+1	
			Observation at cathode	P6. Gas Bubbles	P7. Shiny grey solid deposited	1+1	7
			Notes: if cell is reverse	d, award mark for P3,	P4 and P5 only		
		(b)	[Able to calculate the n	•			
			P1. Number of mole of $\frac{1.0 \times 50}{1000} \parallel 0.05 \text{ mol}$	silver ion:		1	
			P2. Number of mole of	f silver			
			1 mol of Ag ⁺ produ	ice 1 mol of Ag //			
			0.05 mol of Ag^+ pr	voluce $\frac{1}{1} \times 0.05$ 0.05 mol of Ag		1	
			P3. Mass of silver $= 0.0$	e		1	3

No.	Mark Scheme	Sub Mark	Total Mark
(c) (i) (i)	[Able to explain the similar observations in Set I and Set II in terms of oxidation number] Set I: P1. bromine is more <u>electronegative</u> than iodine P2. bromine displaces iodine from potassium iodide solution P3. oxidation number of iodine increases from -1 to 0 P4. iodide ion is oxidised to iodine// $2\Gamma \rightarrow I_2 + 2e$ P5. reaction occur Set II: P6. iodine is less <u>electronegative</u> than bromine P7. iodine cannot displace bromine from potassium bromide P8. reaction does not occur [Able to draw labelled diagram to show apparatus set up to investigate electron transfer at a distance] Carbon Potassium iodide Sulphuric acid	1 1 1 1 1 1	8
	P1. Apparatus set up and labelP2. Label electron flow in the diagram	1 1	2
	TOTAL		20

No.			Mark Scheme	Sub Mark	Total Mark	
Q9	(a)		 [Able to suggest a suitable material to replace vinegar and explain the reason] P1. Hydrochloric acid / Nitric acid / Sulphuric acid P2. Hydrochloric acid / Nitric acid / Sulphuric acid is a strong acid/ ionized completely in water P3. Produced higher concentration of H⁺ P4. React faster to produce more carbon dioxide gas 	1 1 1 1	4	
	(b)	(i) (ii)	[Able to suggest a suitable concentration for acids in Set I and II] Set I: 0.1 mol dm ⁻³ // 0.5 mol dm ⁻³ // 1.0 mol dm ⁻³ Set II: 0.2 mol dm ⁻³ // 1.0 mol dm ⁻³ // 2.0 mol dm ⁻³ [** Concentration of acid used in set II is double of set I] [Able to explain the difference in the rate of reaction in Set I	1		
			 and II] P1. Rate of reaction in Set II is <u>higher</u> than Set I. P2. Concentration of hydrochloric acid in Set II is higher/ double than that of Set I. P3. The number of hydrogen ions per unit volume is higher / double. P4. Frequency of collision between hydrogen ions and zinc atoms is higher. P5. Frequency of effective collision is higher. 	1 1 1 1 1	6	

No.	Mark Scheme	Sub Mark	Total Mark
(c)	[Able to describe an experiment to investigate the effect of temperature on the rate of reaction]		
	Temperature factor		
	<u>Procedure</u> :		
	 P1. [25 – 100] cm³ of [0.1 – 2.0] mol dm⁻³ sodium thiosulphate solution is poured into conical flask. P2. The initial temperature of the solution is recorded. P3. The conical flask is placed on top of white paper with mark 'X' P4. [5 - 20] cm³ of 0.2 mol dm⁻³ hydrochloric acid is poured into conical flask. P5. The stopwatch is started immediately. P6. The conical flask is swirled P7. The stopwatch is stopped once the mark 'X' disappeared from sight and the time is recorded. P8. The experiment is repeated using [25 – 100] cm³ of [0.1 – 2.0] mol dm⁻³ sodium thiosulphate solution using different terms are transported. 	1 1 1 1 1 1 1 1	
	different temperature $\frac{Chemical \ equation}{2 \ HCl + \ Na_2S_2O_3} \rightarrow 2 \ NaCl + SO_2 + S + H_2O$ P9. Correct formulae of reactant and product P10. Balanced equation	1 1	10
		FOTAL	20

	No.		Mark Scheme	Sub Mark	Total Mark
Q10	(<i>a</i>)		[Able to suggest solvent Y, identify salt X and describe chemical test to verify anion in salt X]		
			Sample answer:		
			P1. Solvent Y is water	1	
			P2. Salt X is iron(II) nitrate	1	
			Confirmatory test for nitrate ion		
			P3. Pour salt solution X into a test tube/ boiling tube	1	
			P4. Add/ drop dilute sulphuric acid and iron(II) sulphate <u>solution</u> and shake	1	
			P5. Add concentrated sulphuric acid slowly/ carefully/ drop by drop/ slanted test tube/ along the wall of test tube		
			P6. Brown ring is formed	1	6
			1 0. Brown mig is formed	1	0
	<i>(b)</i>	(<i>i</i>)	[Able to explain the use of barium sulphate]		
			P1. Barium Sulphate is an insoluble salt	1	
			P2. It does not dissolve in the fluid of digestive system	1	2
		(ii)	[Able to suggest solution T and name the reaction]		
			P1. Sodium Sulphate solution / Potassium Sulphate solution/ sulphuric acid		
			[a: any soluble sulphate salt]	1	
			P2. Double decomposition reaction / Precipitation reaction	1	2

No.	Mark Scheme	Sub Mark	Total Mark
(iii)	[Able to describe an experiment to prepare barium sulphate and calculate the maximum mass of salt formed]		
	Procedure:		
	P1. Measure and pour 100 cm ³ of 0.2 mol dm ⁻³ barium		
	nitrate solution into a beaker.	1	
	P2. Add 50 cm ³ of 0.5 mol dm ⁻³ sodium sulphate solution /	1	
	solution T into the beaker. P3. Stir the mixture.	1	
	P4. Filter the mixture using filter paper.	1	
	P5. Rinse the residue/salt using distilled water.	1	
	P6. Dry the salt by pressing it between sheets of filter papers	1	
	Chemical equation:		
	Ba(NO ₃) ₂ + Na ₂ SO ₄ \rightarrow BaSO ₄ + 2NaNO ₃ P7. Correct formulae of reactant and product	1	
	P8. Balanced equation	1	
	P9. Number of mole of Na ₂ SO ₄ = $0.2 (100) / 1000$ = 0.02 mol	1	
	P10. 1 mol of Na ₂ SO ₄ react with 1 mol of BaSO ₄ //		
	0.02 mol of Na ₂ SO ₄ react with 0.02 mol of BaSO ₄	1	
	P11. Mass of $BaSO_4 = 0.02 X 233 = 4.66g$	1	11
			Max 10
		TOTAL	20

PERATURAN PEMARKAHAN TAMAT

TEST SPECIFICATION TABLE SIJIL PENDIDIKAN MRSM CHEMISTRY PAPER 2, 2019

JSU Peperiksaan Akhir SPMRSM Kimia – Kertas 2

Section	Question No.	PK01	KK01	KK02	KK03	KK04	KK05	KK06
	1 Structure atom	a(i)1 a(ii)1 a(iii)1 b(i)1	b(ii)2 c(i)2 c(ii)1					
	2 Carbon compound	a1 b(i)1 c(i)1	d(ii)1	b(ii)1 c(ii)1 d(i)1 e2				
А	3 Acid base	a(i)1 b(i)1	a(ii)3	a(iii)2 b(ii)3 c(iii)3				
	4 Chemical formula and equation	a(i)1 b1	c(i)1 d2	a(ii)2 c(ii)3				
	5 Electro chemistry	a(i)1	a(ii)1 a(iii)1 b(i)1	a(iv)1 b(ii)1	b(iii)3	c2		
	6 Thermochemistry	a1	b1	c1 e3 f2	d2	g1		

Section	Question Number (Topic)	Construct of Elements Evaluated					
		KK 01 Knowledge	KK 01 Comprehension	CS 02 Application	KK 03 Analysis	KK 04 Synthesis	
			4	6	3		
D	Q7 CHEMICAL FORMULAE & PERIODIC TABLE OF ELEMENTS		7a [4m]	7b (i) [2m] 7b (ii) [4m]	7c (i) [6m] 7c (ii) [4m]		
В	Q8		4	6	10		
	ELECTROCHEMISTRY & REDOX			8b [3m] 8c(ii) [2m]	8a [7m] 8c(i) [8m]		
				4	7	10	
	Q9 RATE OF REACTION			9a [4m]	9b (i)(ii) [6m]	9b(iii)[10 m]	
С	Q10 ACID AND BASE SALT			4	6	10	
				10b(i)[2m] 10b(ii)[2m]	10a(i)[6m]	10b(iii) [10m]	